Bài 1 (Tổ hợp - Sưu tầm). Cho tam giác \(ABC\). Một điểm \(P\) trong tam giác gọi là "điểm tốt" nếu tìm được \(2021\) tia chung gốc \(P\) cắt tam giác thành \(2021\) tam giác con có diện tích bằng nhau. Hỏi có bao nhiêu "điểm tốt" như vậy?
Trả lờiMỖI NGÀY MỘT BÀI TOÁN TỔ HỢP
Được tạo lúc 2021-05-17 14:49:15 , cập nhật lúc 2021-05-24 13:25:44
Phan Vĩnh Tiến
Diem
Chỉnh sửa lần cuối vào 2021-09-09 18:14:06
Nội dung
Có thể chứng minh bằng quy nạp rằng luôn đưa tất cả xu về mặt sấp được, thật vậy, dùng phương pháp quy nạp với n, đánh số các đồng xu từ 1 đến n, tại tất cả thao tác i = 2 -> n ta sẽ kẹp đồng xu 1 vào để biến thành thao tác i = 1 -> n - 1 với các đồng xu còn lại (1).Theo quy nạp thì chúng sẽ luôn sấp. Nếu đồng xu 1 ngửa sau quá trình (1) thì ta có thể dùng thao tác 1 từ đầu để biến nó thành sấp, ngược lại có thể dùng nó vào xu 2021 trước khi thực hiện quá trình (1) và đạt được trạng thái quy nạp với n.
Diem
Chỉnh sửa lần cuối vào 2021-09-09 18:29:34
Nội dung
Kí hiệu 1 số x(a,b) là một số x bắt buộc phải lớn hơn a số và bé hơn b số.
Ta sẽ thực hiện các bước từ bước 1 ngược lại, hay nói cách khác, ban đầu có 1 số x1(0,0), vì phép lấy min nên x phải nhỏ hơn 2 số x1(0,0) khác, nên kết quả sau bước 1 là x2(0,2).
Bước 2, vì phép lấy max nên x2(0,2) phải lớn hơn 2 số x2(0,2) khác, nên kết quả sau đó là x3(2,2).
Từ đó, có thể dễ thấy một số x(a,b) sau phép min trở thành x(2a+2,b) và tương tự với phép max.
Dễ thấy quá trình a = 2a + 2 sau 1010 bước sẽ trở thành 3^1009 - 1
Như vậy sau 2020 bước, các số đạt được nằm trong khoảng [3^1009, 3^2020 - 3^1009]
Khương Nguyễn

Chỉnh sửa lần cuối vào 2021-12-26 18:55:55
Nội dung
Cho \(n(n\geq 6)\) điểm trên 1 mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Gọi \(k\) là số màu được tô cho các cạnh được nối bởi các điểm
này. Giả sử \(k\leq 2\). Gọi \(M\) là số tam giác tối thiểu cùng màu. Tìm giá trị nhỏ nhất của \(M\).