Bài 12+1
Đặt \(\dfrac{1}{a}=x,\dfrac{1}{b}=y,\dfrac{1}{c}=z\)
Khi đó : \(\dfrac{1}{1+xy+z^2}=\dfrac{xy+yz+zx}{xy+yz+zx+xy+z^2}=\dfrac{\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}}{\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{2}{bc}}\)
\(=\dfrac{a(a+b+c)}{2a^2+ab+bc+ca}\)
dự đoán Pmax = \(\dfrac{9}{5}\) tại \(x=y=z=\dfrac{1}{\sqrt{3}}\).
Ta sẽ cm \(\sum\)\(\dfrac{a(a+b+c)}{2a^2+ab+bc+ca}\)\(\leq \dfrac{9}{5}\)\( \Leftrightarrow\)\(\sum\)\(\dfrac{a}{2a^2+ab+bc+ca}\)\(\leq \dfrac{9}{5(a+b+c)}\)
\(\Leftrightarrow \)\(\sum\)\(\dfrac{a(ab+bc+ac)}{2a^2+ab+bc+ca}\)\(\leq \dfrac{9(ab+bc+ca)}{5(a+b+c)}\)\(\Leftrightarrow \)\(\sum(a-\dfrac{2a^3}{2a^2+ab+bc+ca})\)\(\leq \dfrac{9(ab+bc+ca)}{5(a+b+c)}\)
\(\Leftrightarrow \)\( \dfrac{9(ab+bc+ca)}{5(a+b+c)}\)\(+\sum\dfrac{2a^3}{2a^2+ab+bc+ca}\)\(\geq a+b+c\)
Lại có : \(\sum\dfrac{a^3}{2a^2+ab+bc+ca}\geq \)\(\dfrac{(\sum a^2)^2}{\sum a(2a^2+bc+ac+ab)}\)( bđt C-S)
\(=\)\(\dfrac{(\sum a^2)^2}{6abc+(\sum a)(\sum 2a^2-\sum ab)}\)
vẫn theo bđt C-S : \((ab+bc+ca)^2\geq 3abc(a+b+c)\)\(\Leftrightarrow \)\(3abc \leq \dfrac{(ab+bc+ca)^2}{a+b+c}\)
từ đó suy ra : \(\sum\dfrac{a^3}{2a^2+ab+bc+ca}\)\(\geq\) \(\dfrac{(\sum a^2)^2(\sum a)}{2(\sum ab)^2+(\sum a)^2(\sum 2a^2-\sum ab)}\)
\(=\dfrac{(a^2+b^2+c^2)(a+b+c)}{2(a^2+b^2+c^2)+3(ab+bc+ca)}\)
nên ta sẽ cm : \(\dfrac{2(a^2+b^2+c^2)(a+b+c)}{2(a^2+b^2+c^2)+3(ab+bc+ca)}\)\(+ \dfrac{9(ab+bc+ca)}{5(a+b+c)}\)\(\geq a+b+c\)
\(\Leftrightarrow \)\(10(a^2+b^2+c^2)(a+b+c)^2+18(ab+bc+ca)(a^2+b^2+c^2)+27(ab+bc+ca)^2\)
\(\geq 10(a^2+b^2+c^2)(a+b+c)^2+15(ab+bc+ca)(a+b+c)^2\)
phá hết ra rồi rút gọn ta được :
\(a^3b+a^2bc+a^3c+ab^3+b^3c+ab^2c+c^2ab+bc^3+ac^3\)
\(\geq a^2b^2+b^2c^2+c^2a^2+2a^2bc+2b^2ac+2c^2ab\)
\((ab+bc+ca)(a^2+b^2+c^2-ab-bc-ca)\geq 0\)(luôn đúng)
\(\Leftrightarrow \)P max = \(\dfrac{9}{5}\) tại \(x=y=z=\dfrac{1}{\sqrt{3}}\)